Through comprehensive simulations, we predict the formation and distribution of pollutants during combustion, allowing us to take proactive measures to minimize environmental impact. With insights from CFD, our engineers design combustion systems that meet and exceed environmental regulations, developing solutions that significantly surpass industry standards.
燃焼技術の向上
高度な数値流体力学(CFD)を活用することで、燃焼性能の最適化、排出ガスの削減、運転における熱伝達効率と信頼性の向上を支援できます。当社のCFDの使用により、お客様のシステムが規制要件を満たすと同時に、持続可能性の目標をサポートし、パフォーマンスと安心感の両方を提供します。
燃焼性能の最適化
最高の燃焼性能を達成することは、卓越性へのコミットメントの基本です。高精度なシミュレーションを使用して、燃料と空気の混合、火炎安定性、温度分布の重要な要素を微調整します。非効率性を排除し、燃焼反応を最適化することで、お客様の運転効率を高め、機器の寿命を延ばすことができます。
Emissions Reduction
Heat Transfer Analysis
By leveraging CFD for heat transfer analysis, our engineers gain insights into the intricacies of thermal dynamics within combustion systems. CFD simulations provide us with a mechanism to explore temperature distributions, thermal gradients, and heat transfer rates, allowing us to optimize heater and boiler designs to perform as intended over the life of the equipment.
Stress and Structural Analysis
Our engineers employ CFD and Finite Element Analysis (FEA) to simulate the interplay of thermal stresses, pressure loads, and vibration. This allows us to design robust combustion equipment and predict and mitigate potential structural vulnerabilities so we can optimize designs to provide mechanical reliability for the equipment's lifetime.
Design Iterations and Prototyping
Utilizing CFD in design iterations accelerates product development and enhances the precision of our designs. Virtually testing and refining each iteration significantly reduces the need for physical prototypes, which minimizes development costs and allows us to deliver cutting-edge solutions to our customers more efficiently.
Fuel Injection and Atomization
Our engineers utilize CFD simulations to analyze and optimize fuel injection processes. By simulating the fuel injection and atomization processes in a virtual environment, we gain insights into the dynamics of fuel behavior. This enables us to design fuel nozzles that deliver fuel with precision and promote efficient and stable combustion.
Flame Shape and Stability
Through detailed CFD simulations, our engineers analyze the complex dynamics of flame behavior, developing combustion systems that exhibit stable and controlled flames under various operating conditions. This approach contributes to the overall reliability of our combustion equipment.
System Integration and Interaction
Utilizing CFD, we conduct comprehensive analyses of system integration and interaction. CFD simulations allow us to explore the intricacies of how different components interact within the combustion system. By virtually dissecting the system, our engineers gain insights into potential areas of improvement and optimization.